yingfu cai, sultan noman qasem, harish garg, hamīd parvīn, kim-hung pho, zulkefli mansor. (2021). optimal reordering trace files for improving software testing suitcase. - computers, materials & continua. 1225-1239. |
zhengbo luo, hamīd parvīn, harish garg, sultan noman qasem, kim-hung pho, zulkefli mansor. (2021). dealing with imbalanced dataset leveraging boundary samples discovered by support vector data description. - computers, materials & continua. 2691-2708. |
yixuan wang, liping yuan, harish garg, ali bagherinia, parvīn hamīd, kim-hung pho, zulkefli mansor. (2021). information theoretic weighted fuzzy clustering ensemble. - computers, materials & continua. 369-392. |
mohammad reza mahmoudi, marzieh rahmati, zulkefli mansor, amirhosein mosavi , and shahab s. band. (2021). a statistical approach to model the h-index based on the total number of citations and the duration from the publishing of the first article. - complexity. 1-8. |
amirhosein mosavi, manouchehr shokri, zulkefli mansor, sultan noman qasem, shahab s. band and ardashir mohammadzadeh. (2020). machine learning for modeling the singular multi-pantograph equations. - entropy. 1-18. |
mohammad reza mahmoudi, dumitru baleanu, zulkefli mansor, bui anh tuan, kim-hung pho. (2020). fuzzy clustering method to compare the spread rate of covid-19 in the high risks countries. - chaos, solitons and fractals. 1-9. |
kasra mohammadi, shahaboddin shamshirband, amirrudin kamsin, p.c. lai, zulkefli mansor. (2016). identifying the most significant input parameters for predicting global solar radiation using an anfis selection procedure. - renewable and sustainable energy reviews. 423-434. |
shahin sajjadi, shahaboddin shamshirband, meysam alizamir, por lip yee, zulkefli mansor, azizah abdul manaf, torki a. altameem, ali mostafaeipour. (2016). extreme learning machine for prediction of heat load in district heating systems. - energy and buildings. 222-227. |
kasra mohammadi, shahaboddin shamshirband, dalibor petkovic, por lip yee, zulkefli mansor. (2016). using anfis for selection of more relevant parameters to predict dew point temperature. - applied thermal engineering. 311-319. |
naji s., keivani a., shamshirband s., alengaram u.j., jumaat m.z., mansor z., lee m.. (2016). estimating building energy consumption using extreme learning machine method. - energy. 506-516. |
sareh naji,afram keivani, shahaboddin shamshirband, ubagaram johnson alengaram, mohd zamin bin jumaat,zulkefli mansor,malrey lee. (2015). estimating building energy consumption using extreme learning machine method. - energy. 506-516. |